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Introduction

Bayesian Method(s)

1. Bayesian methods: A “bag of tricks”
I Reach in and grab one (when it’s convenient)

2. Bayesian method: An approach to doing inference
I Distinct from the “frequentist” approach
I Instead of a bag of tricks, it’s more like a school of magic

I The tricks (Bayesian methods) emerge organically from the principles of the
discipline (the Bayesian method)

I As Obi-wan Kenobi said to Luke Skywalker
I “You must learn the ways of the force method if you’re to come with me to

Alderaan inference”

3. The method is powerful
I “For my ally is the force method, and a powerful ally it is.” –Yoda

4. But the bag-of-tricks way of thinking leads to the dark side

(i.e., using Bayesian methods for frequentist purposes)
I “The dark side of the force method is a pathway to many abilities some

consider to be unnatural.” –Chancellor Palpatine
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Introduction

Outline

1. Bits and pieces regarding the method in general
I How a Bayesian uses probability
I Bayes’ rule

I What it is
I Recursive updating
I Moving targets

I Sampling distributions versus posterior distributions
I Conceptual issue

I Gibbs sampler and Rao–Blackwellization
I Regression

I Two ways to express the model

2. How I use the method to learn about mutual fund skill
I Linear factor model for mutual fund returns
I Bayesian density estimation

I Calculating the predictive distribution
I Computing a well-informed prior

I Starting with an open-minded prior

I Learning about skill within fund-regimes

:( Very little discussion of the numerical methods involved
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The method

How a Bayesian uses probability

1. Probability is used to characterize information
I Probability is not about long-run frequencies per se

2. Consider a hypothesis H that has a fixed, unknown truth value
I A Bayesian can assign a probability to the truth of the hypothesis

I Example: Pr[H is True] = 60%

3. Consider a parameter θ that has a fixed, unknown value
I A Bayesian can assign a probability distribution to the parameter

I Example: p(θ) = N(θ|2, 3)

? N(µ, σ2) denotes the normal distribution (also known as Gaussian)
I with mean µ and variance σ2

“x is normally distributed”: x ∼ N(µ, σ2)

Normal PDF (Probability Density Function) for x

p(x) = N(x|µ, σ2) =
e−

(x−µ)2

2σ2

√
2πσ
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The method

Bent coin example

Probability and information

1. Coin lands concave side up 60% of the time
I Bayesian and frequentist agree

2. One side of the coin is labeled “heads” and the other side is “tails”
I You don’t know which

3. What is the probability the coin comes up “heads”?
I Bayesian says 50%
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The method

Bayes’ rule: Thomas Bayes (1702–1761)
An Essay towards solving a Problem in the Doctrine of Chances (1763)

1. Data and parameter(s)
I Data: y = (y1, . . . , yn)
I Parameter(s): θ = (θ1, . . . , θd)

2. Joint distribution factored into conditional and marginal distributions

p(y, θ) = p(y|θ) p(θ) (first way)

= p(θ|y) p(y) (second way)

implies

p(θ|y) =
p(y|θ) p(θ)

p(y)
∝ p(y|θ) p(θ) (Bayes’ rule)

I Note: p(y) =
∫
p(y, θ) dθ =

∫
p(y|θ) p(θ) dθ

3. Conventional names
I p(θ|y) — posterior distribution
I p(y|θ) — likelihood (sample information about θ)
I p(θ) — prior distribution (non-sample information about θ)
I p(y) — marginal likelihood
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The method

Sampling distribution and likelihood

This expression
p(y|θ)

has two uses

1. Sampling distribution (a function of y with θ fixed)
I for the data y when the parameter θ is known∫

p(y|θ) dy = 1 (PDF integrates to 1)

I Used to run things “forwards”
I Original use of probability (games of chance)

2. Likelihood (a function of θ with y fixed)
I for the unknown parameter θ when the data y are observed

L(θ) = p(y|θ)

I Used to run things “backwards” for inverse probability
I Bayesian inference
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The method

Some history
For example, see McGrayne (2012) The Theory that Would Not Die

1. Thomas Bayes
I Richard Price (edited and presented Bayes’ paper)

2. Pierre-Simon Laplace
I Independently discovered and extensively developed “Bayes’ rule”

3. John Venn (and others) were unhappy with aspects of Laplace’s
formulation

4. Ronald A. Fisher (and others) developed alternatives

5. World War II
I Bayesian methods used to win the war and kept secret after the war
I Code breaking, the German tank problem, etc

6. Atom bombs and thermonuclear bombs
I Markov Chain Monte Carlo (MCMC) invented to compute integrals
I Ulam, Metropolis, Teller

7. Image reconstruction
I Produced the Gibbs sampler

8. Fast(er) computers made recent advances possible (109 over 50 years)
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The method

Some comments on Bayes’ rule

1. Everyone used Bayes’ rule
I Frequentists use Bayes’ rule when there is a “genuine” prior distribution

I “Genuine” means based on observed frequencies
I Bayesians use Bayes’ rule all the time

I Observed frequencies are great and Bayesians use them when they’re
available

I But Bayesians do not restrict themselves to only those cases where
observed frequencies are available

2. Bayes’ rule is about learning
I Prior distribution is transformed into posterior distribution via likelihood

I Posterior distribution gets used as the prior distribution
I when more data becomes available
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The method

Recursive updating

1. Keep track of the observations: y1:n = (y1, . . . , yn)

2. Likelihood — given conditionally iid observations (conditional on θ)
I iid means “independently and identically distributed”

p(y1:n|θ) =

n∏
i=1

p(yi|θ) (conditional independence)

3. Bayes’ rule and its recursive structure

p(θ|y1:n) =

likelihood︷ ︸︸ ︷
p(y1:n|θ)

prior︷︸︸︷
p(θ)

p(y1:n)︸ ︷︷ ︸
all data in likelihood

=

likelihood︷ ︸︸ ︷
p(yn|θ)

prior︷ ︸︸ ︷
p(θ|y1:n−1)

p(yn|y1:n−1)︸ ︷︷ ︸
only new data in likelihood

where the prior p(θ|y1:n−1) is the posterior given by

p(θ|y1:n−1) =
p(y1:n−1|θ) p(θ)

p(y1:n−1)
=
p(yn−1|θ) p(θ|y1:n−2)

p(yn−1|y1:n−2)

and so on
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The method

Suppose the “parameter” is a “moving target”

1. Likelihood
p(yn|θn) (observation equation)

I For each observation yn there is a different “parameter” θn

2. Transition probability
p(θn|θn−1) (law of motion)

3. Bayes’ rule

posterior for θn︷ ︸︸ ︷
p(θn|y1:n) =

p(yn|θn)

prior for θn︷ ︸︸ ︷
p(θn|y1:n−1)

p(yn|y1:n−1)
(updating)

where the prior is given by

prior for θn︷ ︸︸ ︷
p(θn|y1:n−1) =

∫
p(θn|θn−1)︸ ︷︷ ︸
law of motion

posterior for θn−1︷ ︸︸ ︷
p(θn−1|y1:n−1) dθn−1 (prediction)

4. The Kalman filter is a special case
I When p(yn|θn) and p(θn|θn−1) are Gaussian
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The method

Relation between sampling and posterior distributions
Sometimes they appear to be the same (but they’re not)

1. y = (y1, . . . , yn) where p(y|µ, σ2) =
∏n
i=1 N(yi|µ, σ2)

I Assume σ2 is known
I Define µ̂ = 1

n

∑n
i=1 yi

2. Sampling distribution

µ̂ ∼ N(µ, σ2/n)

I µ̂ is a test statistic (a function of the data)
I If we knew µ (the truth), then we could say where we think µ̂ (i.e., the

data) is likely to be

3. Posterior distribution
µ ∼ N(µ̂, σ2/n)

I µ̂ is a sufficient statistic (a complete summary of the data)
I Having seen the data (i.e., µ̂), we can say where we think µ (the truth) is

likely to be
4. Mathematically, the two density functions are equivalent

N(µ̂|µ, σ2/n)︸ ︷︷ ︸
sampling

≡ e
− (µ−µ̂)2

2 σ2/n√
2π σ2/n

≡ N(µ|µ̂, σ2/n)︸ ︷︷ ︸
posterior
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The method

Relation between sampling and posterior distributions
Sometimes they appear to be quite different (as they are)

1. “Understanding Unit Rooters: A Helicopter Tour”
I Sims and Uhlig (1991) Econometrica

2. Autoregression

yt = ρ yt−1 + εt εt
iid∼ N(0, σ2) (time series)

I Stationary autoregression |ρ| < 1
I Unit root (random walk): ρ = 1

3. When ρ is near 1
I Sampling distribution is highly non-Gaussian

I Dickey–Fuller distribution
I Posterior distribution is Gaussian (if the prior is flat)

I follows from the Gaussian likelihood

4. These two distributions are quite different from each other
I How is one to choose??!
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The method

What I want

1. I want to be able to make probability statements about
I where parameters are likely to be
I which models are more likely
I where future observations are likely to be

2. The Bayesian method delivers this

3. When I started out I realized: I have to use a prior
I The “price of admission”
I This is a cost

4. Over time, I came to see this differently: I get to use a prior
I This is a benefit

5. BTW, frequentists (get to) use priors implicitly
I Sometimes they call it “regularization”
I Bishop (2006) Pattern Recognition and Machine Learning

I Bayesian approach provides a “principled framework” for machine learning
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The method

Gibbs sampler

1. Let θ = (θ1, θ2)

2. The joint posterior distribution

p(θ|y) = p(θ1, θ2|y)

(often) can be completely characterized by the two full conditional
posterior distributions

p(θ1|y, θ2) and p(θ2|y, θ1)

3. Let {θ(r)}Rr=1 = {(θ(r)1 , θ
(r)
2 )}Rr=1 denote a sample from p(θ|y)

4. Given θ(r), compute θ(r+1) as follows

θ
(r+1)
1 ∼ p(θ1|y, θ(r)2 )

θ
(r+1)
2 ∼ p(θ2|y, θ(r+1)

1 )
(Gibbs sampler)

I Looks like cheating (it’s not)
I Draws are not iid (they’re serially dependent)

I Equivalent number of independent draws is less than R
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The method

Rao–Blackwellization

1. You have draws {(θ(r)1 , θ
(r)
2 )}Rr=1 from posterior distribution p(θ1, θ2|y)

2. You want to plot the marginal distribution for θ1

3. You could use a histogram of {θ(r)1 }Rr=1

4. Or you could Rao–Blackwellize

p(θ1|y) =

∫
p(θ1, θ2|y) dθ2 =

∫
p(θ1|y, θ2)

dP (θ2|y)︷ ︸︸ ︷
p(θ2|y) dθ2

≈ 1

R

R∑
r=1

p(θ1|y, θ(r)2 )

By taking an indirect route you get a smooth approximation

I Using the draws {θ(r)2 }Rr=1

5. Note: Follows from Rao–Blackwell theorem
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The method

Regression: How to express the model

1. Traditional way

yi = α+ β xi + εi for i = 1, . . . , n

where
εi

iid∼ N(0, σ2)

2. Alternative way (Bayesians do it this way)

p(y|x, θ) =

n∏
i=1

p(yi|xi, θ)

where θ = (α, β, σ2) and

p(yi|xi, θ) = N(yi|α+ β xi︸ ︷︷ ︸
µi

, σ2)
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Mutual funds

Mutual fund data

1. Jones and Shanken (2005)
I “Mutual fund performance with learning across funds”

2. U.S. Equity funds
I Number of funds: n = 5,136

3. Monthly observations, January 1961 to June 2001
I Returns not available for all funds on all dates

I Some funds come into existence after beginning
I Some funds go out of existence before end

I Minimum 12 observations per fund, mean 77.3 months
I Total number of observations: 396,820

4. Returns adjusted for risk-free rate, before fees and taxes

5. Four-factor model (Fama–French and Cathcart)
I EMRF — excess market return
I SMB — small minus big (market capitalization return)
I HML — high minus low (book-to-market equity return)
I MOM — momentum (past one-year)
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Mutual funds

Factor model for mutual fund returns

1. Returns net of the risk-free rate
I There are n mutual funds: Y1:n = (Y1, . . . , Yn)
I Fund i has Ti − τi + 1 observations: Yi = (yiτi , . . . , yiTi)

I Not a panel since no requirement that τi = τj or Ti = Tj
I ft is a vector of factors at time t

I Fi is a matrix of factors aligned with (τi, Ti)

2. Likelihood (this is just a regression)

p(Y1:n|F1:n, α, β, ς
2) =

n∏
i=1

p(Yi|Fi, αi, βi, ς2i )

where

p(Yi|Fi, αi, βi, ς2i ) =

Ti∏
t=τi

N(yit|αi + f>t βi, ς
2
i )

βi is a vector of factor coefficients for fund i

3. αi > 0 represents skill for fund i
I Question: Which funds display skill and which don’t?
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Mutual funds

Likelihood for skill (equals posterior with a flat prior)

1. αi is the parameter of interest for fund i

2. (βi, ς
2
i ) are nuisance parameters — for now

3. Jeffreys prior for the nuisance parameters: p(βi, ς
2
i ) ∝ 1/ς2i

4. Then (suppressing Fi in the notation)

p(Yi|αi) =

∫∫
p(Yi|Fi, αi, βi, ς2i )

ς2i
dβidς

2
i = Student(αi|α̂i, τ2i , νi)

where (α̂i, τ
2
i , νi)

I depends only on the data (Yi, Fi)
I is a sufficient statistic for (Yi, Fi)

5. In particular, α̂i is the ordinary least squares (OLS) estimate
I Let φi = (αi, βi)
I Then α̂i = φ̂i1 where

φ̂i = (F>i Fi)
−1F>i Yi

6. Posterior with a flat prior
I If p(αi) ∝ 1, then p(αi|Yi) = p(Yi|αi)
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Mutual funds

The data
in the form of the likelihoods p(Yi|αi) = Student(αi|α̂i, τ2i , νi)
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1. Plot of 90% confidence intervals for αi, sorted by α̂i (shown in red)
2. If p(αi) ∝ 1 then these are HPD regions for posterior distributions
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Mutual funds

Luck and perspicacity

1. Luck is in the likelihood
I The likelihood encapsulates the data (the observations)
I How do we know that a fund manager wasn’t just lucky?

2. Perspicacity is in the prior

(discernment, keen perception)
I The prior encapsulates what has been learned from other sources
I If we knew what the distribution of alphas was, then we would be able to

better evaluate the likelihood
I More like wisdom than perspicacity, but wisdom doesn’t start with a “p”

3. There are n− 1 other sources for every fund
I Jones and Shanken pointed this out
I They made an important contribution, but they didn’t go far enough

4. We seek a well-informed prior
I We must first assemble an open-minded prior

I Jones and Shanken’s prior wasn’t open-minded
I they required that skill have a normal distribution

I An open-minded prior allows for a wide variety of distributions
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Mutual funds

Density estimation is the key

1. Bayesian density “estimation” amounts to
I Computing a predictive distribution

2. We conduct the analysis in terms of predicting xn+1 given x1:n
I First we will let xi = α̂i, which we observe
I Later we will let xi = αi, which we do not observe

3. “Boilerplate” (what follows is both everything and nothing)
I Likelihood for parameters ψ

p(x1:n|ψ) =
n∏
i=1

p(xi|ψ) (conditionally independent)

I Prior for the parameters: p(ψ)
I Posterior for parameters ψ

p(ψ|x1:n) =
p(x1:n|ψ) p(ψ)

p(x1:n)
(Bayes’ rule)

I Predictive distribution for next observation xn+1

p(xn+1|x1:n) =

∫
p(xn+1|ψ) p(ψ|x1:n) dψ ≈ 1

R

R∑
r=1

p(xn+1|ψ(r)) (?)
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Mutual funds

Cross-sectional distribution for {α̂i}ni=1
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I Histogram of α̂1:n and predictive distribution p(α̂n+1|α̂1:n)
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Mutual funds

Specify the framework for an open-minded prior
equivalent to a Dirichlet Process Mixture (DPM) model

1. Likelihood is an infinite mixture

p(xi|ψ) =

∞∑
c=1

wc f(xi|θc)

where ψ = (w, θ)
I mixture weights: w = (w1, w2, . . .) where wc ≥ 0 and

∑∞
c=1 wc = 1

I mixture component parameters: θ = (θ1, θ2, . . .)
I kernel

f(xi|θc) = N(xi|µc, σ2
c )

where θc = (µc, σc) — location and scale (mean and std. dev.)

2. Prior
I p(ψ) = p(w, θ) = p(w) p(θ)

w ∼ Stick(ξ) (stick-breaking distribution)

θc
iid∼ H (base distribution)

ξ is the concentration parameter
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Mutual funds

How to cope with an infinite number of components

1. The number of observations is finite: n <∞
I Thus: the number of “occupied” mixture components is always finite

(and usually far less than n)

2. “Unoccupied” components can be consolidated (by averaging)
I into a single component with a finite weight

3. Alternatively: truncate the sum (make the mixture finite)
I But make the upper bound large enough to ensure there are always a few

“unoccupied” components (2 will do, 5 is good, 10 is plenty)

p(xi|ψ) =
M∑
c=1

wc f(xi|θc)

M is the upper bound
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Mutual funds

Specify the framework for an open-minded prior
(continued)

(This material will not be on the test.)

1. Stick-breaking prior

wc = vc

c−1∏
`=1

(1− v`) where vc
iid∼ Beta(1, ξ)

2. Prior for the concentration parameter

p(ξ) =
1

(1 + ξ)2

3. Base distribution: p(θc) = p(µc) p(σc)

p(µc) = N(µc|0, s2) (Normal)

p(σc) =
(3/A2)σc

(1 + (3/A2)σ2
c )2/3

(Singh–Maddala)
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Mutual funds

10 draws from the open-minded prior
each draw is a probability distribution
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I p(xi|ψ) plotted for each of ten draws of ψ from p(ψ)
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Mutual funds

Reminder: Cross-sectional distribution for {α̂i}ni=1
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I Histogram of α̂1:n and predictive distribution p(α̂n+1|α̂1:n)
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Mutual funds

Latent variable density estimation
because we don’t observe the alphas

1. What we would do if we observed the alphas

p(αn+1|α1:n) =

∫
p(αn+1|ψ) p(ψ|α1:n) dψ (predictive)

2. What we know about the alphas given what we actually observe

p(α1:n|Y1:n) (posterior)

3. Combine what we would do with what we know

p(αn+1|Y1:n) =

∫
p(αn+1|α1:n)︸ ︷︷ ︸

predictive

p(α1:n|Y1:n)︸ ︷︷ ︸
posterior

dα1:n (?)

I (?) is latent variable density estimation
I it’s a weighted average of the predictions (what we would do)
I the weights come from the posterior distribution (what we know)
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Mutual funds

A more computationally friendly expression
for latent variable density estimation

1. R draws from p(ψ|Y1:n)

{ψ(r)}Rr=1 = {(w(r), θ(r))}Rr=1

where
I w(r) = (w

(r)
1 , w

(r)
2 , . . . , w

(r)
M )

I θ(r) = (θ
(r)
1 , θ

(r)
2 , . . . , θ

(r)
M )

Notes
I M is the upper bound
I θc = (µc, σ2

c )

2. A computationally friendly expression uses the posterior for ψ

p(αn+1|Y1:n) =
∫
p(αn+1|ψ) p(ψ|Y1:n) dψ (?)

≈ 1
R

∑R
r=1 p(αn+1|ψ(r))

≈ 1
R

∑R
r=1

∑M
c=1 w

(r)
c N(αn+1|µ(r)

c , σ
2 (r)
c )

If R = 1000 and M = 20, then this is a mixture of 20,000 Gaussians
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Mutual funds

The well-informed prior
computed via latent variable density estimation
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Mutual funds

Comparison

p(αn+1|α1:n)

p(αn+1|Y1:n)
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I Comparison of well-informed prior p(αn+1|Y1:n) with the smoothed
histogram p(αn+1|α̂1:n)
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Mutual funds

Remember this? “Before”
in the form of the likelihoods p(Yi|αi) = Student(αi|α̂i, τ2i , νi)
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I Plot of 90% confidence intervals for αi, sorted by α̂i (shown in red)
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Mutual funds

Posterior intervals: “After”
They display shrinkage relative to the likelihoods
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I Plot of 90% posterior probability intervals for αi, sorted by E[αi|Y1:n]
(shown in red)
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Mutual funds

Vary the likelihood and see how the posterior changes
increase the width of the likelihood (as measured by τ)
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τ = 1
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τ = 2
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I Likelihoods p(Yn+1|αn+1) = Student(αn+1|10, τ2n+1, 10)
and associated posterior distributions
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Mutual funds

Skill related not to fund, but to fund-regime

1. Thus far, we have assumed skill was associated with a fund
I But it’s probably more like skill is associated with a fund manager

I and managers move from one fund to another

I But even while a manager is at a given fund, he or she may change the
investment strategy and the skill associated with that manager/strategy
might change

2. The upshot
I Without a lot of additional information, we can’t be sure which

observations from a given fund constitute a fund-regime

3. Let’s ask the return data (that we already have) to try to sort this out
I Let the data tell us when the coefficients change
I We can use a change-point model for this
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Mutual funds

Change-point model

1. Let sit denote the fund-regime number for fund i at time t
I Start numbering at 1 (siτi = 1)
I Each time there’s a change of regime increase sit by 1

2. Let qi denote the probability of a regime change for fund i

p(si,t+1 = m′|sit = m, qi) =

{
qi m′ = m+ 1

1− qi m′ = m

3. Likelihood within a fund-regime

p(yit|sit = m) = N(yit|αim + βim ft, ς
2
im)

I All the parameters (αim, βim, ς
2
im) are regime-dependent

4. Infinite-order mixtures for
I αim
I each component of βim
I ς2im
I qi
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Mutual funds

Change-point model details

1. Number of regimes is about 12,000
I Number of funds is about 5,000
I About 2.4 regimes per fund on average

2. All funds have about the same probability of regime change
I qi ≈ .015
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Mutual funds

How were the draws (from the posterior) made?

1. Gibbs sampler
I Mixture models rely on latent classifications

I zi = c means fund i is classified with component c
I etc, etc, etc

Insert here: Too Much Information

2. All calculations in Mathematica
I Took 330 hours (14 days) using 12 cores
I Part of the calculation was parallelized
I Each “draw” took about 10 seconds
I Made 120,000 draws

I Discard first 60,000
I Keep every 6th of the next 60,000 (for 10,000)
I Use every 10th of those (for 1,000)

3. Why Mathematica?
I It’s what I know (and I know it pretty well)
I I started with Version 2 in early 1990s
I No packages for sampler: Code is all written by me (hand crafted)
I Extensive use of Compile (to speed things up)
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Mutual funds

Predictive distribution for alpha
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Mutual funds

Predictive distribution for beta 1 (market)
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Mutual funds

Predictive distribution for beta 2 (SMB)
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Mutual funds

Predictive distribution for beta 3 (HML)
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Mutual funds

Predictive distribution for beta 4 (MOM)
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Mutual funds

Specific funds

1. The change-point model
I Each fund’s alpha can change from one month to the next

I same for each fund’s betas (and sigma too)

2. Consequently, there is a separate posterior distribution
I for each fund-month
I for each parameter

(about 2.4 million posterior distributions)

3. But alphas do not have to change from one month to the next
I So the distributions can be the same from one month to the next

4. Posterior distribution for αit given all data

p(αit|Y1:n) =

∫
p(αit|sit) p(sit|Y1:n) dsit ≈

1

R

R∑
r=1

p(αit|s(r)it )

I p(αit|sit) is the posterior distribution given the fund-regime number sit
I it tells which observations in Yi to use for the likelihood
I it tells which mixture component N(αit|µc, σ2

c ) to use for the prior
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Mutual funds

Posterior distributions for αit for Magellan Fund

I Colors indicate managers: Peter Lynch is green
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Mutual funds

Posterior distributions for αit for Magellan Fund
a different view of the same thing
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I Highest Posterior Density (HPD) regions
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Mutual funds

Predictive distribution for beta 2 for fund 50
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Mutual funds

The need for machine learning

1. Applied to the results of our estimation
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Summary

Summary: The Bayesian Method

1. Allows one to
I combine sample and non-sample information
I learn

I across entities, units, regimes

2. Allows one to
I do optimal signal extraction
I generate hypotheses for further investigation

I based on the extracted signals

3. Forces one to
I confront a realistic assessment of uncertainty
I think seriously about what one already knows

I before seeing the new data

4. Final thought: Decision theory is Bayesian
I Optimal decision minimizes the expected loss

I Loss function (depends on the decision and on unknowns)
I Expectation is computed with respect to the posterior distribution for the

unknowns given the observations

Mark Fisher (FRB Atlanta) Bayesian Methods October 27, 2017 56 / 56


	Introduction
	The method
	Mutual funds
	Summary

